Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Trials ; 24(1): 213, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2262440

ABSTRACT

BACKGROUND: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. METHODS: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. DISCUSSION: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents. TRIAL REGISTRATION: EU CT-Number: 2022-500024-30-00.


Subject(s)
Kidney Transplantation , Torque teno virus , Adult , Humans , Tacrolimus/adverse effects , Kidney Transplantation/adverse effects , Quality of Life , Immunosuppression Therapy , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Immunosuppressive Agents/adverse effects
2.
J Clin Virol ; 158: 105345, 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2244172

ABSTRACT

OBJECTIVES: To investigate the comparability of WHO standard referenced commercial SARS-CoV-2 antibody tests over three doses of BNT162b2 vaccine and up to 14 months. METHODS: 114 subjects (without previous SARS-CoV-2 infection or immunosuppressive medication) vaccinated with three doses of BNT162b2 were included in this study. Antibody levels were quantified 3 weeks after the first dose, 5-6 weeks and 7 months after the second dose, and 4-5 weeks and 4 months after the third dose using the Roche Elecsys SARS-CoV-2 S, the Abbott SARS-CoV-2 IgG II Quant, the DiaSorin LIAISON SARS-CoV-2 TrimericS IgG, the GenScript cPASS sVNT and the TECO sVNT assays. RESULTS: For each time point analyzed, systematic differences are evident between the results in BAU/mL of the three antibody binding assays. The assay ratios change in a time-dependent manner even beyond administering the third dose (Roche measuring 9 and 3 times higher than Abbott and DiaSorin, respectively). However, changes decrease in magnitude with increasing time intervals from the first dose. IgG-based assays show better agreement across them than with Roche (overall correlations: Abbott x DiaSorin: ρ = 0.94 vs. Abbott x Roche: ρ=0.89, p < 0.0001; DiaSorin x Roche: ρ = 0.87, p < 0.0001), but results are not interchangeable. The sVNTs suggest an underestimation of antibody levels by Roche and slight overestimation by both IgG assays after the first vaccine dose. CONCLUSIONS: Standardization of SARS-CoV-2 antibody binding assays still needs to be improved to allow reliable use of variable assay systems for longitudinal analyses.

3.
Eur J Clin Invest ; 51(11): e13632, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1334446

ABSTRACT

BACKGROUND: There is preliminary evidence that individuals with previous SARS-CoV-2 infections exhibit a more pronounced antibody response. However, these assumptions have not yet been supported by data obtained through various CE-marked tests. This study aimed to close this gap. METHODS: Sixty-nine seronegatives and 12 individuals post-SARS-CoV-2 infection (tested by CE-labelled Roche NC immunoassay or PCR-confirmed assay) were included 21 ± 1 days after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. Antibody response to viral spike protein (S) was assessed by CE-labelled Roche S and DiaSorin S1/S2 assays and by a surrogate virus neutralization test (sVNT). RESULTS: After a single dose of BNT162b2, individuals after natural SARS-CoV-2 infection presented with markedly higher anti-S levels than naïve individuals (Roche S: 9078.5 BAU/mL [5267.0-24 298.5] vs 79.6 [24.7-142.3]; and DiaSorin S1/S2: 1465.0 AU/mL [631.0-5365.0] vs 63.7 [47.8-87.5]) and showed all the maximum observed inhibition activity in the sVNT (98%), without overlaps between groups. There was a trend for higher responses in those with a more distant infection, although not statistically significant. The relative antibody increase after dose 2 was significantly higher among naïve individuals (25-fold), but antibody levels remained below that of seropositives. CONCLUSIONS: Compared with naïve individuals, seropositives after natural SARS-CoV-2 infection presented with a substantially higher antibody response already after dose 1 of BNT162b2, as measured by two CE-marked in vitro diagnostic tests and a sVNT. These results should stimulate discussion and research on whether individuals after previous SARS-CoV-2 infection would benefit from a two-part vaccination schedule or whether these currently much-needed second doses could be saved.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Age Factors , BNT162 Vaccine , COVID-19/immunology , COVID-19 Serological Testing , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2
4.
Microbiol Spectr ; 9(1): e0024721, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1288359

ABSTRACT

Reliable quantification of the antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly relevant, e.g., for identifying possible vaccine failure and estimating the time of protection. Therefore, we evaluated five different anti-SARS-CoV-2 antibody assays regarding the quantification of anti-spike (S) antibodies. Sera from 69 SARS-CoV-2-naive individuals 21 ± 1 days after vaccination with a single dose of BNT162b2 (Pfizer/BioNTech) were tested using the following quantitative assays: Roche S total antibody, DiaSorin trimeric spike IgG, DiaSorin S1/S2 IgG, Abbott II IgG, and Serion/Virion IgG. Results were further compared to the percent inhibition calculated from a surrogate virus neutralization test (sVNT). Individual values were distributed over several orders of magnitude for all assays. Although the assays were in good overall agreement (ρ = 0.80 to 0.94), Passing-Bablok regression revealed systematic constant and proportional differences, which could not be eliminated by converting the results to binding antibody units (BAU) per milliliter, as suggested by the manufacturers. Seven (10%) individuals had negative sVNT results (i.e., <30% inhibition). These samples were identified by most assays and yielded significantly lower binding antibody levels. Although all assays showed good correlation, they were not interchangeable, even when converted to BAU per milliliter using the WHO international standard for SARS-CoV-2 immunoglobulin. This highlights the need for further standardization of SARS-CoV-2 serology. IMPORTANCE Reliable quantification of the antibody response to SARS-CoV-2 is highly relevant, e.g., for identifying possible vaccine failure and estimating the time of protection. We compared the performance of five CE marked tests that quantify antibodies against the viral spike protein. Our findings suggest that, although all assays showed good correlation, their results were not interchangeable, even when converted to BAU per milliliter using the WHO international standard for SARS-CoV-2 immunoglobulin. This highlights the need for further standardization of SARS-CoV-2 serology.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19 Vaccines/immunology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Neutralization Tests , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL